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Summary

Radar systems must detect targets in the presence of clutter and jamming (colored noise) signals. By
exploiting signal diversity, space-time adaptive processing (STAP) improves radar detection performance in
colored noise-limited environments. This set of lecture notes describes fundamental aspects of space-time
detection theory in Gaussian noise. We first describe basic detection theory; key aspects of the discussion
include the formation of a sufficient statistic, threshold setting, matched filtering, and the notion of a whitening
filter. We then examine the role space-time signal diversity plays in enhancing target detection performance in
colored noise environments. Next, we define commonly used performance metrics, including signal-to-
interference-plus-noise ratio (SINR) loss factors. The latter part of the paper describes practical aspects of
space-time detection: we consider various detector structures, estimation of unknown parameters, and the
impact of clutter heterogeneity on detection performance.

1. Introduction

Target detection serves as the primary goal of radar. Moving target indication (MTI) is a common radar
mission involving the detection of airborne or surface moving targets. The signal-to-noise ratio (SNR) - a
characterization of the noise-limited performance of the radar against a target with radar cross section at at
range r-is approximated as SNR(O'0)= PG"(O)•(-4 D N, AL (1)

where P, is peak transmit power, G, (0, 0) is antenna gain, Ae is the effective receive aperture area, Ni, is the
input noise power, FJ, is the receiver noise figure and Ld represents radio frequency (RF) system losses [1].

Assuming the noise is uncorrelated (white) and Gaussian, the probability of detection is a one-to-one function
of both SNR and probability of false alarm. It is also important to point out that by maximizing SNR, the
processor maximizes probability of detection. In light of (1), by increasing power-aperture PJAe, the radar
designer ensures detection of targets with diminishing radar cross section at farther range. System constraints
and cost limit the deployable power-aperture product.

In addition to noise-limited constraints, the aerospace radar system design must accommodate the impact of
ground clutter and jamming on moving target detection. Clutter and jamming represent colored noise; unlike
white noise, clutter and jamming exhibit a degree of correlation. Either individually, or collectively, we refer
to clutter and jamming as interference. Interference increases the amount of ambiguity in the target decision
process. In other words, as the interference increases, it becomes more difficult to decide whether a target is
present in a given observation. Analogous to the white noise detection scenario, the probability of detection
depends on both signal-to-interference-plus-noise ratio (SINR) and the specified false alarm rate. Since
SINR <SNR, interference always degrades detection performance in comparison with the noise-limited case.

Signal diversity, in the form of spatial and temporal degrees of freedom (DoF), greatly enhances radar
detection in the presence of colored noise. Specifically, the appropriate application of space-time DoFs
maximizes signal-to-interference-plus noise ratio (SINR) when the target competes with ground clutter and
barrage jamming. Clutter exhibits correlation in both spatial and temporal dimensions, while jamming is
predominantly correlated in angle for modest bandwidth. Space-time adaptive processing (STAP) involves
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adaptively (or dynamically) adjusting the two-dimensional filter response in an attempt at maximizing the
filter's output SINR, and consequently, improving radar detection performance.

The objective of this set of lecture notes is to develop the basic theory of space-time detection. Six sections
comprise this paper. In the next section, we begin by considering basic elements of hypothesis testing and
detection theory. The important notions of matched filtering and whitening arise from this discussion.
Subsequently, in Section 3 we describe the importance of signal diversity in advanced radar sensor design.
Radar offers signal diversity in the following dimensions: spatial, slow-time (or Doppler), fast-time (or range),
polarization and multi-scan. An appropriate selection of these available degrees of freedom (DoF) is necessary
for effective performance enhancement. Herein, our interest lies in the space and slow-time dimensions. (In a
companion paper [21, we describe the simultaneous application of space and fast-time DoFs to mitigate terrain
scattered jamming.) After discussing signal diversity, we develop several typical STAP performance metrics
in Section 4; the metrics enable comparison of competing STAP techniques and non-adaptive processing
schemes. Section 5 investigates several practical STAP implementation structures. STAP is a data domain
implementation of an optimum filter; practical implementation issues include estimating unknown quantities,
alleviating computational burden and minimizing training data requirements. Another issue of practical
concern is clutter heterogeneity. Clutter heterogeneity degrades STAP performance by exacerbating the
estimation the interference covariance matrix, an essential STAP component. Thus, we devote the final
section of the paper - Section 6 - to issues centering on covariance estimation errors resulting from clutter
heterogeneity.

The following is a list of the more common variables used in'this paper:

Pv = probability of detection;

PrF = probability of false alarm;

Px (x) = probability density function of X;

- r, 7' = detection threshold;

N = number of slow-time pulses;

M = number of spatial channels;

0,8= azimuth and elevation angles;

fd = Doppler frequency;

s. (0, 0) = spatial steering vector;

v, (b, 0) = surrogate spatial steering vector;

s,., (0,0, fd) = space-time steering vector;

vs., (0,0, fd) = surrogate space-time steering vector;

x r C"'1 • spatial snapshot, k1h range realization

XkE C""fX` = space-time snapshot, kth range realization;

yk = (scalar) filter output;

Wk = space-time weight vector;

Rk = space-time covariance matrix;

R•k itk = estimated covariance matrix and estimated weight vector.

In general, a boldface, lowercase variable indicates a vector quantity; a boldface, upper case variable indicates
a matrix; and, a variable with a caret is an estimate. Additionally, an optimum filter implies clairvoyant
knowledge of the statistics of the signal environment. Primary data, or test cells, are those ranges the
processor tests for target presence. Secondary data and training data are synonymous, and indicate those range
cells used to estimate the unknown characteristics of the primary data. Superscripts "T" or "H" applied to a
vector or matrix denote the transpose or hermitian (conjugate transpose) operations. The notation
a- CN(pt,R.) indicates that a is complex normal (Gaussian) with mean It. and covariance matrix R., and

b - N(pb, Rb) implies b is normally distributed with mean itb and covariance matrix Rb.
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2. Basic Detection Theory

The primary objective of a radar is to detect a target at a given range; in fact, radar is an acronym for "radio
detection and ranging." This section of the paper describes the basics of radar detection. Additionally, we
unify detection theory and predominant notions of adaptive filtering. Excellent sources of further information
on radar detection include [3-6]. The whitening operation, matched filtering, and SINR are the key elements
of this unification.

Clutter, jamming and receiver noise are random variables evolving in time. For instance, we can never
precisely predict the clutter voltage. Rather, we can describe the statistical distribution of clutter, jamming and
thermal receiver noise. Similarly, the target amplitude is a random variable; the famous Swerling models are
usually used to describe target amplitude fluctuation [I]. Due to the random nature of the radar signal
environment, ambiguity as to whether or not a target is present is always a concern. The goal of detection
theory is to provide a rational procedure for confidently determining, in a statistical sense, which of two
possible -models - target present or target absent - generated a given observation. Hypothesis testing is the
cornerstone of detection theory.

Prior to our hypothesis testing discussion, we briefly provide some germane background information. The
probability density function (pdf), given as px(x), describes' the relative frequency behavior of random
variable X. The joint pdf between X and Y is Px~y(x,y). If we consider n trials, and then observe specific

occurrences of X = x a total of nx times, and the simultaneous occurrence of X = x and Y = y a total of n,
times, then px(x) = nx/ n and pxy (x,y) = nxy/ n; similarly, we find pr (y) = n/ n for random variable Y.
In hypothesis testing, the conditional probability density is most significant. Thus, we ponder the probability
associated with observing Y given that wehave already observed certain behavior in X. We may then define
the conditional probability density as pbyix(Yf x) = Px,r (x,y) /Px (x) (n.I, /n)l(nxl In). If X and Y are

statistically independent, then Pxy (x,y) = Px (x)py (y), since Py1x (y x) = py (y) as a result of the fact that

knowledge of X has no bearing on our estimating the probability that Y = y.
Radar detection is a binary hypothesis testing application. The Neyman-Pearson criteria (NPC) are most

commonly used to implement this hypothesis testing procedure since no a priori probabilities are necessary in
the decision mechanism. In radar, the NPC aids in deciding between the two hypotheses: H0 and H,. H0 is

known as the null hypothesis and corresponds to the case of target absence, while H, is the alternative
hypothesis and indicates target presence. The NPC nomenclature includes the probability of detection, P.,

and the probability of false alarm, PFA:

P, = Pr[choose H, I H1 is true] = JPXIH, (x I H1)dx;
T, 

(2)
PFA = Pr[choose H, I H0 is true] = fpxA,, (x Ho)dx,

where T, defines the "target present" decision region. The goal of the NPC is then to maximize PD while

maintaining PFA < y, where y is the maximum false alarm rate the radar system and associated data processor
can tolerate.

Figure 1 shows the relationship between PD, PFA and the threshold setting ri. Observe a fundamental truth

from this figure: lowering the threshold to increase PD necessarily increases PFA, and viceversa. The regions
of overlap among the two pdf's signifies the ambiguity in the decision-making process. The NPC detector
provides an optimum mechanism for determining target presence or absence in light of this ambiguity.

Applying the NPC in an optimization procedure (see [3-4] for details) leads to a decision mechanism
known as the likelihood ratio test (LRT), which is given by
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A(x) =PxII., (x [H1) > (3

PYIH,, (xl H0) <

The LRT is the detector! It compares the ratio of the two likelihood functions, PXIH,, (x] H,).,,=O.I to the

threshold setting; if the value exceeds the threshold, the processor declares target presence, while if the ratio is
less than the threshold setting, the processor assumes the null hypothesis.

• (Threshold setting)

pPl(x(x

lox
S PFA P

Figure 1. Relationship between PD, PFA and threshold setting, Tl.

It is commonplace to apply a monotonic operation to simplify the LRT. For example, the natural logarithm
is often applied to reduce expressions involving exponential functions. A sufficient statistic results after
manipulating the LRT into a canonical form involving a function of the observed data. We denote the
sufficient statistic as

H,

T(x) > l. (4)

H,

We obtain the modified threshold in (4) by deriving the pdf of hl(x) under the null hypothesis condition and

then solving

PF = P ,(' (x)I H0)dx=' (5)

for il'. As one might expect, we ascertain detection performance by calculating the pdf of P(x) under the
alternative hypothesis case.

Application of the LRT is best understood through example. For this reason, let's consider a colored
Gaussian noise (CGN) scenario. Our hypotheses are given as

Hi : x = si + n (6)

for i = 0,1, where x is the vector observation, s, is the target signal, s. = 0, and n is the interference vector.

Also, suppose x represents a coherent dwell of N pulses, spaced by the pulse repetition interval, TP, i.e.,
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x=[x(0) x(Tp)-- x((N-1)T,)]. (7)

The joint pdfof(7) is

P,, (x IH) p. (x - s). (8)

Assuming that n is distributed according to a complex Gaussian distribution with zero mean and covariance
matrix R. = E[nnH], then

p. (n) exp(-n"R-'n). (9)

Forming the LRT using (8)-(9), then taking the natural log and simplifying yields

H,

Re(s R'x) I ll(). (10)2 <2
He

The first term on the left-hand side of(10) is a whitening filter, R." 2 , while R."-2s, is a linearly transformed
matched filter. The matched filter maximizes SNR (in the noise-limited case); hence, in the presence of
colored-noise, the detector first whitens (decorrelates) the colored-noise, and then applies a matched filter as in
the noise-limited case. The whitening filter and matched filter will be discussed in further detail in subsequent
sections.

It then follows from (10) that a sufficient statistic is

Hx

TP(x) =Re(sHfR-,x) > qf; T(x)~ N( Re(si R-'s,),sR-'s,). (11)
HO

The threshold and performance of the detector in (11) are then given by

lnl) + sRI's') =Q(ln(q) -IsRn's 1  (12)

21s s7R-'s, 2, FsHR.'s,

where Q(x)= - do is the right-tail distribution (complementary cumulative distribution) of a

Gaussian variate with zero mean and variance of unity. Numerical tables provide values of Q(x) and Q-'(x)

[3]. We then use the expression for PFA and Q- (x) to calculate the threshold 11.

Figure 2 shows an upper and lower bound on Q(x). The important observation from (12) and Figure 2

concerns the role of the factor sR[•s1 ; this term represents the SINR. As sR Rn1 s, increases, the argument

in (12) decreases for the PD calculation and so detection performance improves. In effect, the argument in

(12) for PFA increases, and so the false alarm rate decreases below the specification unless the threshold is

increased. An increase in SINR serves to separate the pdf's for null and hypothesis conditions, making it
easier to distinguish target absence from target presence. Figure 3 clarifies this point by comparing the
histograms for null and alternative hypothesis with three different values of signal-to-noise ratio. We plot the
amplitude of the complex observations; in the null hypothesis case this yields a Rayleigh distribution, while



1-6

for the alternative hypothesis we have the well-known Rician distribution [6]. Adequate SNR or SINR is
essential to acceptable detection performance.

The appropriate exploitation of signal diversity can be used in the Gaussian case to maximize SINR, hence
yielding maximal detection performance for any specified false alarm rate. Perhaps the simplest example of
the benefits of signal diversity involves sidelobe noise jamming. For a single channel system, the jamming
enters the sidelobes of the antenna and masks target detection over all Doppler. However, since the noise
jammer is spatially correlated, spatial sampling of the jammer waveform using multiple spatial channels
provides information on the jammer direction of arrival. This information can then be used to construct a
whitening filter to mitigate all signals coming from the jamming angle. Effectively, the detector implements a
contrained matched filtering operation, where the constraint places a filter null in the jammer direction. The
consequent increase in SINR leads to greatly improved detection performance, as our prior discussion
indicates.

Ground clutter exhibits a two-dimensional correlation in angle and slow-time. The seminal result on space-
-time detection theory for radar application is given by Brennan and Reed in [5]. Using the hypothesis testing
theory of the prior discussion, we have the mathematical framework to develop Brennan and Reed's result.
Herein, we elect to synopsize the key aspects of this development.

Consider the hypotheses

H,0: xW=xI+ xk; HI : x, = ST +x (13)

where x.. E C""I is the space-time snapshot for N pulses and M spatial channels for the kth range

realization and hypothesis Hm. Additionally, xko - CN(O,Rk ), where Rk is the null-hypothesis covariance

matrix, ST E CNMI is the space-time signal vector, and xk,1 E CNmXI and xk E CNN•IX are space-time
interference and noise snapshots. Each space-time snapshot is organized as

Xk=[xr,(0) xr,(Tp) ... xr((N-1)T) C (14)

where x,,(n)E C""' is the spatial snapshot for the no' pulse. The detector involves forming a function of the

filter output, y. = wlx,] where Wk C CNMII is the space-time weight vector. The pdf for the two hypothesis
of(13) are

P(Yk',H)=T exp[ H,. 1 . 0,1; (15)"2/ a , 2U2'

with the mean and interference-plus-noise variance given by

P.y E[v, 0 for H0.
"Wk wS for H, ' (16)

or;=E yk -11 k -,)y =wk kwk'

Upon forming the LRT and algebraically manipulating, we find a sufficient statistic taking the simple form

I>(

IykI~r. (17)

Ho
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The pfd's of(17) for null and alternative hypotheses are Rayleigh and Rician, respectively [5]. Armed with
the distributions, we can then determine the threshold setting and detection performance. The threshold is
calculated from

PF, Pr[Iy& I > ix.J exp 2c;12 (18

Detection performance is given by

PD=Q Q(M,(a"I)=Jvexp 2  ,o (av)dv; where,

SP 2(19)
r 2 aHv r-, r ykY, a, =-,-=SNR.,, a= IWk ST, andf=--.

Iy Ce UprBon o
101,

Upper endof

10-'

Lower

10i-

10"0

0 1 2 3 4 5 6 7 8 9 10
x

Figure 2. Upper and lower bounds on the complementary cumulative distribution for a Gaussian variate.
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Figure 3. Comparison of noise-only histogram with signal-plus-noise histograms for varying SNR.
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I0 (-) is the modified Bessel function of the first kind and order zero. QM(a, 0) is known as Marcum's Q and

is a monotonically increasing function of the square-root of SINR and monotonically decreasing function of
normalized threshold setting, 0; numerical techniques are required to solve for PD in (19).

The receiver operating characteristic (ROC) characteristic of the space-time detector in (17) is shown in
Figure 4. The different curves shown in the figure correspond to different false alarm rates. Observe that as
the false alarm rate increases - implying a decrease in the threshold - the detection probability increases.

Receiver Operating Characteristic (ROC)

0. 1 •PFA= IE-40 .8 - - F E -.. .. ... .. ... . .. . .. ...... .... ... . .. ./ ( .. .... .......
0.58

0.7
[o06

05

02

0.3

SINR (Decibets)

Figure 4. Receive operating characteristic for space-time detector.

3. Signal Diversity

Pulsed radar sensors can potentially measure angle (azimuth, elevation or cone angle), Doppler (slow-time),
range (fast-time), polarization, and the multi-scan behavior of target and interference behavior. Different
classes of interference exhibit varying correlation over the available sensor measurement spaces. Table 1
describes different interference types and their respective correlation properties.

Table 1. Correlation Characteristics of Some Interference Ty pes

0.3 ...r.rn c ...e ... ...r.aio .... ............ . .. ..... en.. -

Ground Clutter Azimuth (or cone angle) and Doppler, Space and slow-time adaptive processing

polarization response may differ from (STAP) can mitigate clutter, polarization
clutter. may aid the detection of very slow targets.

Nasrowband Noise Jamming Angle (azimuth andelevation). Spatial null suppresses jamming signal.
Wideband Noise Jamming Angle and fast-time. Variation with wavelength must be

s ocompensated with fast-time processing.

______________________________ _____________________________also helps with channel mismatch.Hot Clutter Angle and fhst-time. Jammer waveform often correlated in fast-
Table___________ 1._CorrelationCharacteristicsofSomeIn time.

Cold and Hot Clutter Angle, slow-time and fast-time. Requires 3-D STAP.

The ability to separate interference and target characteristics in the chosen measurement spaces enables the
processor to enhance the target while mitigating the interference. Inherently, the processor takes advantage of
the differences in correlation properties to maximize SINR in the multidimensional detection space, thereby
maximizing detection performance. Figure 5 provides a notional view of the impact of signal diversity on
detection performance. In this figure, X, Y and Z are Fourier transforms of measurement domains x, y
and z ; hence, Figure 5 is a three-dimensional power spectral density (PSD). The inverse Fourier transform of
the PSD yields the correlation function. Notice the separability of the target from the interference in the three-
dimensional space. However, projecting the data into any two-dimensional data space, we observe the
masking of the target by the interference. When the target shares the same space as the interference, filtering
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has little or no impact on SINR. In the three-dimensional space, the detection processor can construct a filter
to maximize the gain on the target while nulling the interference.

.. y-z projection*

interference. ..
x-y projection

Figure 5. Notional view of the importance of signal diversity on target detection. In three dimensions, the
target and interference are separable, and hence more detectable, while in two dimensions the interference

masks the target.

The impact of ground clutter on detection performance serves as our primary focus. For this reason, the
remainder of the paper considers the space (azimuth or cone angle) and slow-time (Doppler) dimensions.
Figure 6 shows the PSD for simulated ground clutter; observe the coupling in angle. and Doppler marked by
those two-dimensional frequencies with larger clutter power values. The dashed line denotes the transmit
direction. The processor searches for targets along this line at all Doppler. Mainlobe clutter - located near
zero Doppler and zero angle - impedes the detection of slow-moving targets. Endo-clutter detection refers to
detection of low radial velocity (low Doppler) targets existing in the diffraction-limited clutter regions.
Additionally, sidelobe clutter - present at those Doppler frequencies away from zero Doppler - masks the
detection of faster moving, exo-clutter targets. Figure 7 shows the corresponding space-time filter response.
The filter places a null on the clutter ridge. This matched two-dimensional response leads to maximal SINR.

Angle-Doppler Power Spectral Density dB

8070
400 IMV 60

2020

0 ~1
-030

-20

-80 -80 -40 -20 0 20 40 80 80

Angle (degrees)

Figure 6. Power spectral density for ground clutter.
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"OPTIMUM FILTER RESPONSE dB

*40

600 '"

20

400

20020
S0 -20

8-200 v
-4000

~ -~L-60

-600 ' ,4d

S "h ,'- , , -80
-80 -60 -40 -20 0 20 40 60" 80

Angle (Degrees)
Figure 7. Space-time optimal filter response.

Signal diversity is an essential component in enhancing the detection of slow moving and/or weak targets
competing with ground clutter returns. Choosing other measurement spaces, with perhaps the exception of
polarization, will not help improve performance. As can be seen from Figures 6-7, it would be very difficult,
if not impossible, to detect a target at zero angle and zero Doppler. Yet, since STAP is a member of the class
of super-resolution algorithms, the processor can detect targets very close to mainbeam clutter.

4. Performance Metrics

We briefly consider several of the more useful performance metrics used to characterize STAP
performance. We begin by describing the difference between adaptive and optimal processors.

STAP is a data domain implementation of an optimal filter. In developing the space-time detector in (13)-
(19), we pointed out that by maximizing SINR, the processor maximizes PD. The results in these equations are
valid for any weight vector w,. We are interested in the weight vector leading to maximal SINR, which is
given as

Wk = IgRk's,., (0, 0, fd), (20)

where gi is an arbitrary constant and s,.,_(0,0,fd) is the target space-time steering vector. The space-time
steering vector is - -

s,(O, 0,f ) = st(fd) ®S,(,0)), (21)

with s1 (fd)E CNI representing the temporal (Doppler) steering vector pointing to Doppler frequency fd, and

S,(4,0)E CmX" denoting the spatial steering vector for a signal at azimuth ¢ and elevation 0. The space-time
steering vector is the normalized response of the radar sensor to a target with a specified angle of arrival and
Doppler frequency, i.e., sT = as,-, (0, 0, fd) for complex amplitude ot.

We now consider a short proof on the optimality of(20). Observe that

[EMy][I H WS'St

SINR =P =E k--s-ts k w (22)
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where y, is the signal-only filter output, YI.N is the null hypothesis filter output, and P. and PIN represent
output signal power and null hypothesis output power. Additionally, we have removed the space-time steering

vector's dependence on angle and Doppler for notational convenience. Next, let Wk= Az and i=AHss_,,

where A - R-. Substituting these expressions into (22) yields

P1+N k k k=zHAHR Az= ZHZ; , E ]jz . (23)

Inserting (23) into (22) gives

S= E"__________ (24)

P/+N zHz

Using the Schwarz Inequality, we find

z H,12 11[Z] [. < HZ11  i . (25)

Notice that an optimal value for z is Z., = =,u ; with this selection, the SINR is maximal. Hence,

WkoO,, = gAA"s,_ = pRk's,., (26)

which is the result we desire.
Several comments are in order. First of all, A = Rk" is a whitening filter since E[AxkxA ] = I,. (i.e.,

the whitening filter decorrelates the colored noise input, hence making it look like white noise). In the white
noise case, s,., is the matched filter; it has a bandpass response with angle and Doppler and maximizes SNR.

We may thus interpret the optimal weight vector as

wof,, =(Rk"22)(Rk,;s,.,) . (27)
Wlhitening Warped

Filter M ~ached Filter

The warped matched filter accommodates the linear transformation applied to the space-time signal vector
during the whitening stage. Finally, keep in mind that SINR is a function of both angle and Doppler.

In the STAP case, both the covariance matrix and target space-time steering vector are unknown. For this
reason, the processor must estimate both quantities. To handle the unknown steering vector, the processor
sweeps across a series of pre-calculated space-time steering vectors, v,., (,0, fd), covering several angle bins

about the transmit direction and the whole Doppler space. Performance degradation resulting from steering
vector mismatch is generally slight. Covariance estimation is more complicated. Commonly, we use the
estimate

4, K M~ (28)

where xm are training (secondary data) taken from ranges adjacent to the test (primary) cell [7]. The adaptive
weight vector is

*k =Pfk' V,-1 ( ,fd), (29)
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where 03 is a constant typically set to 13=1 or 13= "v,,( 1f,0,Jf)k,'v,.(,0, fd)

If the secondary data are multivariate Gaussian and independent and identically distributed (iid) with
respect to the null-hypothesis of the primary data, (28) is a maximum likelihood estimate. Selecting the
number K of secondary data to obtain a suitable estimate via the calculation of (28) is addressed in [7].
Specifically, Reed, Mallett and Brennan have shown that

E [(SINR I wv )/(SINRomPium )] =,(K + 2- NM)/(K + 1). (30)

The famous Reed-Mallett-Brennan (RMB) Rule then states that for the adaptive processor to attain an SINR
loss of -3 dB in comparison with the optimal processor requires K = 2NM - 3. The RMB Rule assumes the
secondary data are iid.

Since a one-to-one correspondence exists between SINR and PD in the Gaussian case, SINR loss factors
are very convenient and commonly used metrics of STAP performance [8]. We may write the output SINR as

SINR(04,0, fd ) = SNR(o,0) x L.., (0,0, fd) x LS, (0, 0, fd); (31)

0<LS,(0,60,fd), LS.,(4,Ofd)< 1.

SNR(0,0) follows from (1). LSI,(0,0,fd) and Ls, 2 (0),0,fd) are SINR loss factors: L,.,(4),0,0,fd) characterizes

the loss in signal-to-noise ratio due to colored noise, while Ls.2 (0,0,fd) measures the loss in SINR resulting

from the error between optimal (known) and adaptive (estimated) weight vectors. L,1 (4,0,fd) captures the
impact of both the system design and signal processing algorithm selection on performance in interference-
limited environments. Definitions of both SINR loss factors are

L•.),(O,,fd)= SINR(0,0,fd),, ; L(, 0,fd) SINR(0,0,fd)[,,, _Adaptive Output SINR (32)
SNR(0,0) SINR(0, 0 ,fd) ,, Optimal Output SINR

Substituting (32) into (31) yields the identity SINR(0, 0, fd) = SINR(4), 0, fd ),-

Figure 8 shows the L•.1 term for the optimal space-time processor (STP) and the conventional digital

beamformer (DBF) followed by Hanning-weighted Doppler processing (DOP). This example corresponds to
the same interference environment shown in Figure 6, except the dwell has been doubled. The poor
performance of the conventional approach is a consequence of the short dwell and small aperture used in this
example. However, the example does highlight the tremendous performance potential of STAP (in an iid
environment, the STAP SINR loss curve appears similar to the optimal STP L,,1 curve of Figure 8, with a
downward shift of a few decibels). The 0 dB line in Figure 8 corresponds to noise-limited performance. From
the SINR loss curves, we derive another very important STAP metric: the minimum detectable velocity
(MDV). The MDV follows from a specification of the maximum tolerable SINR loss if the system is to meet
detection performance requirements. If, for example, 5 dB is the tolerable loss, the radar system MDV in our
example is ±(+/2)x(60 Hz)=±9 m/s for the optimal STP, where X =0.3 m is the RF wavelength.

The optimal and adaptive filter responses are also useful metrics. Given a weight vector, we compute the
filter output response by sweeping across all space-time steerin vectors of interest, viz.

Hpirmj(4)0,.d)=l , (, 0, fd )] (33)

An example of the optimal response is given in Figure 7; the filter is tuned to broadside and 250 Hz. Doppler.
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Figure 8. Example SINR loss curves.

5. Space-Time Detector Structures

In this section we begin by briefly considering some normalizations applied in STAP-type detectors. Then,
we discuss the concept of interference rank, examine several reduced-rank or reduiced-dimension processing
schemes, and consider the role of diagonal loading in STAP implementation.

Recall, in (20) and (29) the optimal or adaptive weight vector includes arbitrary scalars it and 9
respectively. While a particular selection of either scalar does not affect SINR, certain selections are
convenient in subsequent processing. A commonly used detector and normalization is given by

Dope Frqec (Hz)
Fgr8. Exampl -N los ures

IIIt k Xk I'Iw~q ,:.:tk',- <r 34

Ho

where e=l/cn,Rwk'S.e, in this case [9]. Let cndn =Rsoomalto,fd), such that Wk =pidi k. Then, d /tt2 equals

the output noise power of the filter with weight vector ik" In the unknown covariance case, we substitute the
form in (28) into (34), yielding the modified sample matrix inversion (MSMI) detection statistic. In this case,

(34) becomes

HH

Wk Xk [9] 71 's-tk Sutt ,.tk*kTk hRk1Se-tqa (35)

Ho

where we further calculate il for the single channel, single pulse case with the noise variance set to unity.
The term 1 =s.Rk s, modifies the threshold to account for varying interference power levels (and

integration gain). As shown in [9], this normalization leads to a constant false alarm rate (CFAR) property.
As the noise power increases, the threshold increases to maintain CFAR, and vice versa.

Kelly formulated the generalized likelihood ratio test (GLRT) of the form

MxK2 , (36)

ss.t l+ Kx fk'Xk .0
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where K is the number of secondary data samples [10]. This detector also possesses the CFAR property. It
differs in form from (34) as a result of different modeling assumptions: in the GLRT, the detector assumes the
covariance matrix is unknown. The derivation of(36) generally follows the same LRT development described
in the initial sections of this report. Observe the detector can be written

H,
INX IS-ik"'1['2( Xki"'XkJ (37)

A data dependent threshold modifies the MSMI threshold to account for the finite number of training data. As
K becomes large, the test statistic approaches the MSMI result.

Figure 9 provides a block diagram of the overall process. Essentially, a STAP filter suppresses
interference. The scalar filter output is multiplied by a data-dependent "threshold multiplier" - either I /&2 or
1/I& multiplied by the factor in brackets on the far right-hand side of (37) - and then compared to a fixed
threshold.

• I :• t shI d :p t• •••• H

Figure 9. Embedded CFAR in STAP processing.

Other normalizations are possible. For instance, the minimum variance beamformer chooses
It = 1/S,.Rk S,., [1 1]. This normalization accordingly affects the interpretation of the data.

H -,

STAP is effectively a catch-all for a class of linear filters involving SINR maximization of the input data
[81. We can broadly characterize the class of STAP methods into two sub-groups: reduced-dimension (RD)
STAP and reduced-rank (RR) STAP. RD-STAP involves data-independent transformations and bin selection,
whilst RR-STAP is a data-dependent approach. We'll consider these two sub-groups in turn. The ultimate
goals of either RD-STAP or RR-STAP include reducing computational burden and reducing required sample
support.

Figure 10 is an overview of RD-STAP methods. The processor can transform the space-time data via the
data independent transformation

XkkTXkEC, (38)

where T is the transformation matrix and ideally PQ< NM. Common transformations include
beamforming and Doppler processing steps. By analogy to our prior discussion, the required optimal RD
weight vector yielding maximum SINR in the reduced space is

• = (T"RkT)-t THsS-,• (39)

In practice, the RWD-STAP weight vector is given by

=k • 7;-k x m x ., •'= T v5 :, (40)
inl-i
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where K' << K indicates a reduction in required secondary data. Also, RD-STAP computational burden is
O(P3Q3), which typically is far less than for the space-time case with computational load O(N 3M3).

Spatial Filtering
S I : I Angle-Time I

Space-Time Data

Data DtData I I (Be~amspace) I-

Doppler [ I (empI Doppler
F2-DFiltering FilteringI ~Angle-

Space- Doppler Data
(oFDoppler) hDalBta~pce
Doppler ) (Post-Doppler,(Pos-Dopler)Beamspace)

Spatial Filtering

Figure 10. Overview of reduced-dimension STAP methods.

Examples of RD-STAP techniques are available in [8, 12-13]: The Factored Time-Space (FTS) algorithm
is a post-Doppler method suitable for long coherent dwells and higher radial velocity targets. The FTS method
essentially involves spatial notching of the clutter in a given Doppler filter. Since FTS provides no temporal
adaptivity, it is not a true STAP algorithm. To enhance performance with only modest increase in required
sample support and computational burden,. DiPietro proposed the Extended Factored Algorithm (EFA) [12].
The EFA method involves adaptively combining several adjacent Doppler filters (typically three) and all
spatial channels. The EFA method often exhibits performance very close to the theoretical joint-domain (JD)
space-time bound.. To provide diversity in spatial and temporal DoF, Wang developed the Joint Domain
Localized (JDL) technique [13]. JDL is a post-Doppler, beamspace method. Basically, the processor forms
multiple beams, then Doppler processes each beam, and finally selects a collection of adjacent angle-Doppler
bins over which to adapt the filter response. JDL provides good performance with very low training data
requirements and very modest computational burden. Three adjacent beams by three adjacent Doppler bins is
a typical localized JDL processing regions [13]. Figure 11 shows the SINR loss for each of the RD-STAP
methods for the same example shown in Figure 8; we compare performance against the upper bound given by
the JD space-time filter. Each RD-STAP method uses secondary data support of twice the processor's DoF.
Note, our discussion did not include an example of ajoint pre-Doppler and angle method.

Reduced-rank STAP methods involve data-dependent transformations and selections [14-15]. Consider the
following formulation of the optimal weight'vector

w1-sI" (0'01fd) I a--,q. (41)

where Xm is an eigenvalue of Rk with eigenvector q,,, o = min(X•,) and a.~ is the projection of the m"
eigenvector onto the quiescent response given by s,.. In the adaptive case, we substitute Rk for Rk. Thus,

we can view STAP as a pattern synthesis problem: based on a sensing of the environment, the processor places
notches in the quiescent pattern to mitigate. interference. Notice from (41) that no subtraction occurs for
eigenvalues at the noise floor. The principal components (PC)' method involves truncating the summation in
(41) to accommodate only the largest eigenvalue terms. A benefit of this approach is a reduction in training
data support. However, computational burden remains high, since the processor must compute eigenvalues
and eigenvectors. An alternative, yet similar, approach to the PC method is given in [15] and is known as the
Principal Components Inverse (PCI) method. Specifically, the processor computes
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Xk = (I.NN, _QIIQH Xk =X, - ,, (42)

where Q, is the collection of interference eigenvectors (corresponding to each column), fl, is the matrix

enabling perfect subtraction of the designated interference term in Xk, a.!. is the projection of the m'h

eigenvector onto the data snapshot, and , is a non-zero eigenvalue of the interference-only eigenvector. In
practice, we cannot estimate the interference-only eigenvector, and so for strong, low-rank interference we can
set Ai. = 2A, or fl, = Ip (:,l: P) for the P dominant components. Since

Q1QH +QNQH = 'NN, (43)

where QN is the collection of noise eigenvectors (corresponding to each column), we can express (42) as

X = QNQHXk. (44)

Equation (44) indicates that PCI can operate by using the noise subspace information. This stands in contrast
to the PC method using the dominant subspace. Using our familiar example found in Figure 8 and Figure 11,
Figure 12 compares the SINR loss for the PC and PCI methods against the upper bound defined by the JD
STAP solution. The adaptive solution involves a secondary data set of one times the joint domain processor's
total DoF, i.e. K = NM. The interference subspace has dimension 40, and so we use all 40 principal
components for the PC method and all 312 noise subspace components for the PCI approach. Armed with this
information, observe that both methods very closely follow the optimal performance. In practice, choosing the
correct number of components is challenging and an incorrect selection can lead to performance degradation.

SINR Loss Comparison for RD-STAP Methods

I lk
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K= J "" EFA, 3 temnp DoFs
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-70 U
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Doppler Frequency (Hz)Figure 11. SINR loss for RD-STAP methods.

Oftentimes, the covariance estimate is ill-conditioned or exhibits a perturbed noise subspace. In such cases,
diagonal loading can be used to tailor performance [16]. As the name implies, diagonal loading involves
adding an identity matrix to the covariance estimate to stabilize the noise floor and condition the covariance
matrix estimate for subsequent numerical processing. From (41) we find that if the noise eigenvalues are
perturbed, the processor subtracts a noise eigenvector from the quiescent response, Noise eigenvectors exhibit
random sidelobe behavior. Hence, the adaptive filter response for low secondary data set sizes shows elevated
sidelobes. High sidelobes can be problematic, leading for instance to sidelobe target detection. Diagonal
loading cures this problem.
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SINR Loss Comparison for RR-STAP Methods
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Figure 12. SINR loss for RR-STAP methods.

6. Heterogeneous Clutter Effects

Adaptive processing requires secondary (training) data to estimate unknown quantities. For example,
traditional, CFAR circuits [6], which involve scalar adaptive processing, typically select ten range bins on each
side of the test and guard cells to estimate the ambient interference power. STAP similarly requires a training
interval to estimate the null hypothesis covariance matrix. However, in contrast with the scalar CFAR case,
the potentially high dimensionality of STAP requires training data selection over large regions. Suppose a
STAP-based radar has N = 32 (thirty-two pulse dwell) and M = 11 (eleven spatial channels). The minimum
training set is then on the order of 2NM = 704 range bins. If the instantaneous bandwidth is 1 MHz, training
data comes from a region extending over 10 km! Over the 10 km interval, the changing cultural features of the
clutter environment lead to range-angle variation of ground clutter returns. This range-angle variation in then
ground clutter return is known as clutter heterogeneity [ 17-18].

Common STAP training approaches include the following methods: block selection, windowed block
selection and sliding window. In the block selection approach, the processor selects training data sequentially
from a given region and then applies it to a distinct primary data region. The windowed block selection is a
variant of the block selection technique; the training data is chosen sequentially aboutthe primary data region,
with each half of the training data 'coming from opposite sides of the primary data regions. In the sliding
window approach, the processor attempts to localize training data within the vicinity of the primary data.
Thus, the processor chooses training data symmetrically about the test data and adjacent gurd cells. The
sliding window approach is most computationally intense, but numerical techniques are available to alleviate
the computational burden of both covariance estimation and covariance matrix inversion.

As a result of clutter heterogeneity, the precise yet unknown covariance matrix of a given range cell does
not match other ranges. Hence, heterogeneous clutter environments are no longer iid. The non-iid
environment gives rise to increased covariance estimation errors when using (28). Specifically, since
RI # R. in non-iid environments, where p and m indicate the training vector indices and p • m, it stands to

reason that

[1K .1 1K r •1K
E[Ik,]=E -- yx.x, = Y_ E Ex.x,./=- I R. (45)

K M K m=l M K KM=1

In other words, in heterogeneous clutter environments, the covariance matrix estimate tends to an average
characteristic of the training data. For this reason, instantaneous performance can be poor.

Clutter heterogeneity manifests as a modification of certain components and the addition of additional
terms. The angle and Doppler behavior of ground clutter is well defined and results from sensor geometry and
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the platform velocity vector [8]. However, clutter amplitude and spectral width can vary, and target-like
signals lead to extra components. Table 2 synopsizes the various classes of clutter heterogeneity and their
impact on STAP performance.

The covariance estimation errors due to clutter heterogeneity lead to increased SINR loss, i.e. L. ., further

approaches zero. Clutter heterogeneity is a challenge to STAP implementation, since adaptive and optimal
performance does not necessarily converge with increasing number of training vectors. This realization is
driving new STAP approaches holding the potential for robust performance in light of cluttter heterogeneity
and other behavior (see the last entry in Table 2) leading to non-iid training data.

Table 2. Taxonomy of Clutter Heterogeneity

ype ause "Impact onAAdaptiVe Radar

Amplitude Shadowing and obscuration, range-angle Null depth depends on eigenvalue ratio -
dependent change in clutter reflectivity, strong MLE "averaging" leads to underestimated
stationary discretes, sea spikes, urban centers, eigenvalue magnitude, and consequently,
land-sea interfaces, etc. uncancelled clutter and increased false alarm

rate.

Spectral Intrinsic clutter motion due to soft scatterers Null width set to mean spread - too narrow
(trees, windblown fields, etc.), ocean waves; for some range cells, thereby leading to
CNR-dcpendent spectral mismatch. uncancelled clutter, seriously degraded

MDV.

Moving Scatterers Ground traffic, weather, insects and birds, air Mainlobe nulling, false sidelobe target
vehicles, declarations, distorted beam patterns,

exhausts DoF.

Some Other Effects Chaff, hot clutter, multi-bounce/ multipath, Combination of above effects.
impact of platform geometry (e.g., non-
sidelooking or bistatic) on angle-Doppler
behavior over range.

7. Summary

In this set of lecture notes, we consider fundamental aspects of space-time adaptive detection theory.
Section 2 describes the basics of hypothesis testing and relates this information to space-time detection. We
introduce the likelihood ratio test in this section and through example demonstrate its use. Additionally, we
describe the important whitening filter and matched filter concepts, relating them to the detection statistic. We
then describe the application of signal diversity to advanced sensor design in Section 3. Signal diversity helps
cull the weak target signal masked by interference. We provide an example showing the space-time
characteristics of ground clutter and the advantage space-time degrees of freedom offer in enhancing detection
performance. Section 4 first develops the maximum signal-to-interference-plus-noise ratio (SINR) filter,
which maximizes the probability of detection in the Gaussian case. We then describe commonly used STAP
performance metrics. We overview space-time detector structures in Section 5. In this sectiorrwe first begin
by examining STAP normalizations leading to a constant false alarm rate (CFAR) property. We then describe
the philosophy behind reduced-dimension and reduced-rank STAP methods. Reduced-dimension STAP
involves data independent transformations to characterize interference behavior in a smaller subspace.
Advantages of reduced-dimension STAP include a requirement for smaller training data sets and minimal
computational burden. Reduced-rank techniques involve data dependent transformations to derive a stochastic
basis describing the interference properties. The principal component reduced-rank technique can achieve the
upper bound on SINR performance when properly applied. We also introduce the principal components
inverse method in this section. The paper concludes with a brief discussion of clutter heterogeneity. We
define clutter heterogeneity and describe its impact on STAP implementation.
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